Log-convexity and log-concavity of hypergeometric-like functions
نویسندگان
چکیده
We find sufficient conditions for log-convexity and log-concavity for the functions of the forms a 7→ ∑ fk(a)kx , a 7→ ∑ fkΓ(a + k)x k and a 7→ ∑ fkx k/(a)k. The most useful examples of such functions are generalized hypergeometric functions. In particular, we generalize the Turán inequality for the confluent hypergeometric function recently proved by Barnard, Gordy and Richards and log-convexity results for the same function recently proved by Baricz. Besides, we establish a reverse inequality which complements naturally the inequality of Barnard, Gordy and Richards. Similar results are established for the Gauss and the generalized hypergeometric functions. A conjecture about monotonicity of a quotient of products of confluent hypergeometric functions is made.
منابع مشابه
Inequalities of extended beta and extended hypergeometric functions
We study the log-convexity of the extended beta functions. As a consequence, we establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of extended hypergeometric functions are deduced by using the inequalities on extended beta functions. The particular cases of those results also give the Turán-type inequalities for extended confluent and extended Gaussian hypergeomet...
متن کاملLog-Convexity Properties of Schur Functions and Generalized Hypergeometric Functions of Matrix Argument
We establish a positivity property for the difference of products of certain Schur functions, sλ(x), where λ varies over a fundamental Weyl chamber in R n and x belongs to the positive orthant in R. Further, we generalize that result to the difference of certain products of arbitrary numbers of Schur functions. We also derive a log-convexity property of the generalized hypergeometric functions ...
متن کاملSchur positivity and the q-log-convexity of the Narayana polynomials
We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity re...
متن کاملOn the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers
In this paper, we discuss the properties of the hyperfibonacci numbers F [r] n and hyperlucas numbers L [r] n . We investigate the log-concavity (log-convexity) of hyperfibonacci numbers and hyperlucas numbers. For example, we prove that {F [r] n }n≥1 is log-concave. In addition, we also study the log-concavity (log-convexity) of generalized hyperfibonacci numbers and hyperlucas numbers.
متن کاملLecture 1: Entropy, Convexity, and Matrix Scaling
Moreover, if p , q, then the inequality is strict. A proof: The map u 7→ −u log u is strictly concave on [0, 1]; this follows from the fact that its derivative −(1 + log u) is strictly decreasing on [0, 1]. Now, a sum of concave functions is concave, so we conclude that H is concave. Moreover, if p , q, then they differ in some coordinate; strict concavity of the map u 7→ −u log u applied to th...
متن کامل